Устройство люминесцентной лампы и принцип работы

Классическое подключение через электромагнитный балласт

Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Дроссель-для-люминесцентных-ламп.jpg
Дроссель для люминесцентных ламп
Стартер-для-люминесцентных-ламп-Philips-Ecoclick-StartersS10-220-240V-4-65W-1021x1024.jpg
Стартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Подключение лампы с электромагнитным балластом

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Схема подключения одной люминесцентной лампы через стартер

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Второй шаг

На оставшиеся свободными контакты подключаем дроссель.

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Подключение через современный электронный балласт

Подключение-источника-света-с-электронным-балластом.jpg
Подключение источника света с электронным балластом

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с диммерами – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.
Взрывозащищенные люминесцентные светильники серии EXEL-V из нержавеющей стали

Цены на электронные балласты для люминесцентных ламп

Электронный балласт для люминесцентных ламп

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).

Разновидности люминесцентных светильников

Трудно вычислить, что лежит в основе активного развития электротехнических устройств — ажиотажный потребительский спрос или инженерные разработки. Но неоспоримым считается тот факт, что сегодня на рынке можно найти варианты осветительных приборов разнообразных конструкций. Так, появились устройства, которые внешне схожи с люминесцентными, но лампочка заменена на светодиодные элементы.

05-modeli-SL.jpg

Но, несмотря на все новшества, этот тип светильников занимает не последнее место и по спросу, и по количеству разновидностей устройств.

Условно их можно разделить на две большие группы: потолочные и мебельные. Каждая из них имеет достаточно большое количество подвидов.

Потолочные осветительные люминесцентные приборы

Потолочные люминесцентные осветительные приборы — наиболее часто встречаемые светильники. Основная функция которых — организация общего освещения.

06-potolochnyj-LS.jpg

В зависимости от места расположения их условно разделяют на такие подгруппы:

  • потолочные офисные;
  • потолочные промышленные.

Существует множество видов светильников люминесцентных потолочных , их можно разделить на такие типы:

  • четырехламповый (4х18, 4х36);
  • двухламповый (2х23, 2х58).

Светильники для промышленных зон

Для этих целей применяют такие же по типу лампы, но их отличительная черта — отсутствие декоративных излишеств при использовании таких осветительных приборов для промышленных зон. Они характеризуются строгой формой, но при этом дают хороший световой поток. Промышленные люминесцентные устройства дают хороший источник света для больших складских, торговых и производственных помещений. К тому же к таким светильникам выдвигают и более высокие требования по сравнению с бытовыми или офисными конструкциями.

Так, люминесцентные промышленные источники света должны быть более безопасными (светильник взрывозащищенный), сравнительно низкой стоимости, легки в установке, обеспечивать длительный срок эксплуатации при не всегда благоприятных обстоятельствах. Если условия труда предполагают соблюдение повышенной безопасности, то идеальный вариант — взрывозащищенные светильники с люминесцентными лампами. Для удобства работы при таком освещении выбирают приборы, которые не дают бликов. Промышленный светильник должен излучать ровный свет.

Светильники для офисов и бытовые

Офисные и бытовые варианты светильников могут быть классифицированы в зависимости от количества ламп в них. Так, встречаются потолочные двухламповые (ЛПО 2х36 и 2х58) или четырехламповые световые приборы. Их выбор зависит от площади территории, которую необходимо осветить. В зависимости от варианта установки они подразделяются на встраиваемые и накладные подвиды.

Встраиваемые осветительные приборы

Встраиваемые модели служат для освещения помещений офисного или бытового назначения. Конструкция таких приборов позволяет произвести монтаж в подвесных, реечных и натяжных потолочных конструкциях. Встраиваемые осветительные приборы укладываются в каркасы при монтаже потолков.

Наиболее популярными и хорошо зарекомендовавшими себя из всех видов таких встроенных конструкций являются люминесцентные светильники для потолков Армстронг. Они производятся десятками производителей и различаются своими параметрами. Подбор таких осветительных приборов производят посредством подбора параметров, исходя из размеров секции. Так, если потолочный блок Армстронг 600х600, то и светильник люминесцентный подбирают с такими же размерами. В результате потолочный фон получается ровным.

Часто используют модели люминисцентные 2х36 (на 2 лампочки) как один из дешевых видов освещения помещений, где требуется защита осветительного прибора. Светильник люминесцентный встраиваемый 2х36 встречается в спортивных залах, школах, детских садах.

Накладные осветительные приборы

Накладные светильники люминесцентные (4х18) монтируются на твердую поверхность. Это может быть как стена помещения, так и потолок (оштукатуренная железобетонная плита или гипсокартон). Такой накладной конструкцией не пользуются на натяжных потолках. Их выбор достаточно широк. Большой популярностью также пользуются источники света люминесцентные 2х36. Установка происходит при помощи саморезов или дюбелей. Идеальным местом для светильников, которые имеют накладной тип монтажа, считается современный кухонный интерьер, школьные учреждения и офисные помещения.

Одним из видов накладной осветительной конструкции является упомянутая выше модель 4х18 ЛПО-71. Состоит она из цельной стальной основы. Корпус светильника покрыт порошковой краской белого оттенка или цвета металлик. На этой основе установлены 4 люминесцентные лампочки по 18 Вт, поэтому имеет тип 4х18 .

Модель 4х18 имеет также накладной решетчатый материал, который прикрепляется к корпусу с помощью скрытых пружин.

Особенности взрывозащищенных люминесцентных осветительных приборов

Взрывозащищенный люминесцентный осветительный прибор используется в помещениях с повышенной опасностью. Корпус таких приборов сделан из сверхпрочного сплава алюминия, который противостоит коррозии, перепадам температур, попаданию влаги. К тому же все детали во взрывозащищенных светильниках с люминесцентными лампами имеют плотное соединение с герметиком, что обеспечивает изоляцию контактов от пыли и других возможных загрязнений.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Two_black_light_lamps-750x413.jpg

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий